| 1 | ||
czy to jest | ? | |
| n√(a+bx)p |
| 1 | 1 | |||
y = | = | |||
| [(a+bx)p)1n | (a+bx)pn |
| 1 | ||
y' = − | *[(a+bx)pn]' = | |
| [(a+bx)pn]2 |
| 1 | p | |||
− | * | (a+bx)pn −1*(a+bx)' = | ||
| (a+bx)2pn | n |
| p | (a+bx)p−nn | |||
− | * | *b = | ||
| n | (a+bx)2pn |
| b*p | ||
− | *(a+bx){p−n−2pn = | |
| n |
| b*p | ||
− | *(a+bx)−p−nn = | |
| n |
| b*p | ||
− | *(a+bx)−(p+nn) = | |
| n |
| −b*p | |
= | |
| n*(a+b)p+nn |
| −b*p | |
| n*n√(a+bx)p+n |
Zatem:
Ad.1
| x2 | ||
y= | ||
| 3√x3+1 |
| 2x*(x3+1)1/3 − x2*13*(x3+1)−2/3*3x2 | ||
y' = | = | |
| (3√x3+1))2 |
| ||||||||||
= | ||||||||||
| (3√x3+1))2 |
| |||||||
= | |||||||
| (3√x3+1))2 |
| |||||||
= | |||||||
| (3√x3+1))2 |
| 2x4+2x−x4 | |
= | |
| (3√x3+1)2 |
| x4+2x) | |
= | |
| (3√x3+1)2 |
| x(x3+2) | |
| (3√x3+1)2 |