| √x2 + 1 − √x + 1 | ||
limx→0 | ||
| 1 − √x + 1 |
| √x2 + 1 − √x + 1 | ||
limx→0 | = | |
| 1 − √x + 1 |
| (x2 + 1 − (x + 1))*(1 + √x + 1) | ||
limx→0 | = | |
| (1 − (x + 1)) * (√x2 + 1 + √x + 1 |
| (x2 − x)*(1 + √x + 1) | ||
limx→0 | ||
| −x * (√x2 + 1 + √x + 1 |
| x(x − 1)*(1 + √x + 1) | ||
limx→0 | ||
| −x * (√x2 + 1 + √x + 1 |