| x2 | ||
limx→ −∞ [ | +3x−4ln|x| ] = | |
| 2 |
| 1 | 3 | 4ln|x| | 1 | |||||
limx→ −∞ x2*[ | + | − | ] = (+∞)*( | +0−0) = +∞ | ||||
| 2 | x | x2 | 2 |
| x2 | ||
limx→ 0− [ | +3x−4ln|x| ] = 0+0−4*(−∞) = +∞ | |
| 2 |
| x2 | ||
limx→ 0+ [ | +3x−4ln|x| ] = 0+0−4*(−∞) = +∞ | |
| 2 |
| x2 | ||
limx→ +∞ [ | +3x−4ln|x| ] = | |
| 2 |
| 1 | 3 | 4ln|x| | 1 | |||||
limx→ +∞ x2*[ | + | − | ] = (+∞)*( | +0−0) = +∞ | ||||
| 2 | x | x2 | 2 |
| f(x) | 1 | 4ln|x| | ||||
limx→ −∞ | = limx→ −∞ [ | x+3− | ] = −∞+3−0 = −∞ | |||
| x | 2 | x |
| f(x) | 1 | 4ln|x| | ||||
limx→ +∞ | = limx→ +∞ [ | x+3− | ] = +∞+3−0 = +∞ | |||
| x | 2 | x |
| 1 | ||
x2+3x−4ln(−x) dla x<0 | ||
| 2 |
| 1 | ||
x2+3x−4lnx dla x>0 | ||
| 2 |
| 4 | 4 | |||
x+3− | *(−1)=x+3− | dla x<0 | ||
| −x | x |
| 4 | ||
x+3− | dla x<0 | |
| x |
| 4 | x2+3x−4 | |||
f'(x) = x+3− | = | |||
| x | x |
| −3−5 | ||
x1= | = −4 | |
| 2 |
| −3+5 | ||
x2= | = 1 | |
| 2 |
| 1 | 1 | 6 | 7 | |||||
dla x=1 f.osiąga minimum = f(1) = | +3−4ln1 = | + | −0 = | |||||
| 2 | 3 | 2 | 3 |
| 1 | 6 | 7 | ||||
na końcu błąd: = | + | = | ||||
| 2 | 2 | 2 |