| x | ||
∫arccos(√ | )dx | |
| x+1 |
| x | ||
∫ arccos(√ | ) dx = ... | |
| x+1 |
| x | ||
u= arccos(√ | ) v '=1 ⇒ v = x | |
| x+1 |
| 1 | √x+1 | x+1−x | √x+1*√x+1 | |||||
u'= | * | * | = | = | ||||
| √1−xx+1 | 2√x | (x+1)2 | 2√x*(x+1)2 |
| 1 | |
| 2√x(x+1) |
| x | x | |||
=... x*arccos(√ | ) − ∫ | dx = | ||
| x+1 | 2√x(x+1) |
| x | 1 | √x | ||||
= x*arccos(√ | ) − | ∫ | dx=... | |||
| x+1 | 2 | x+1 |
| 1 | √x | 1 | 2t2 | t2 | |||||
∫ | dx = | ∫ | dt = ∫ | dt = | |||||
| 2 | x+1 | 2 | 1+t2 | 1+t2 |
| 1 | ||
= ∫ dt − ∫ | dt = t − arctg t = √x − arctg √x | |
| 1+t2 |
| x | 1 | √x | ||||
x*arccos(√ | ) − | ∫ | dx = | |||
| x+1 | 2 | x+1 |
| x | ||
= x*arccos(√ | ) − √x + arctg √x + C | |
| x+1 |