| 1 | 1 | 1 | 1 | ||||
= | = | = | |||||
| √2x−x2 | √1−x2+2x−1 | √1−(x2−2x+1) | √1−(x−1)2 |
| 1 | ||
∫ | dx = ... | |
| √1−(x−1)2 |
| 1 | ||
=... ∫ | dt = arcsin t + C = arcsin (x−1) | |
| √1−(t)2 |
| 1 | 1 | |||
∫ | dx = lim k→0 ∫ | = lim k→0 [arcsin (x−1)]k1 = | ||
| √1−(x−1)2 | √1−(x−1)2 |
| π | π | |||
= lim k→0 (arcsin (1−1) − arcsin (k−1)) = arcsin 0 − arcsin (−1) = 0 − (− | ) = | |||
| 2 | 2 |
