∫ex 2x dx
∫sin4xcos3xdx
| (2e)x | ||
a) ... = ∫(2e)xdx = | + c. | |
| ln(2e) |
| (2e)x | 2x * ex | |||
∫(2e)xdx = | + C = | + C | ||
| In(2e) | In2 + 1 |
| α+β | α−β | |||
sinα + sinβ = 2sin | cos | |||
| 2 | 2 |
| α+β | |
= 4x | |
| 2 |
| α−β | |
= 3x | |
| 2 |
| 1 | ||
∫sin4xcos3xdx = | * (∫sin7xdx + ∫sinxdx) | |
| 2 |
| 1 | 1 | 1 | ||||
sin4xcos3x = | (a4 − a−4)* | (a3 + a−3) = | (a7 + a − a−1 − a−7) | |||
| 2i | 2 | 4i |
| 1 | ||
= | (sin7x + sinx) | |
| 2 |