ssss
Kami: Znajdz współrzedne punktu A0, symetrycznego do punktu A(−1, 2) wzgledem prostej 3x−y+4 = 0
21 sty 14:56
dero2005:
1) prosta prostopadla do danej i przechodząca przez punkt A
a = −13
y = −13(x+1)+2
y = −13x + 53
2) punkt wspólny prostych S
−13x + 53 = 3x + 4
x = −710
y = 3x + 4 = 3*(−710) + 4
y = 1910
3) liczymy wektor SA→
[xS−xA ; yS−yA] = [310 ; −110]
4) do punktu S dodajemy wektor SA→
xAo = 310 − 710 = −410
yAo = −110+ 1910 = 1810
5) punkt Ao(−410 ; 1810)
21 sty 20:09
Eta:
@dero
jak już mamy te dwa punkty, to
można skorzystaś ze wzorów na współrzedne środka odcinka AAo
xAo= 2xS− xA i yAo= 2yS−yA
21 sty 20:26
dero2005:
można i tak i tak (demokracja calkowita)
21 sty 20:54
Eta:
21 sty 21:05