wielomian z parametrem
kajko: Witam! Proszę o pomoc w rozwiązaniu zadania
Dany jest wielomian o współczynnikach całkowitych
w(x)=x
3+ax
2+bx+2. Dla jakich wartości parametrów a i b wielomian ten ma:
a) co najmniej jeden pierwiastek wymierny?
b) trzy różne pierwiastki wymierne,
c) potrójny pierwiastek wymierny,
d) wymierny pierwiastek podwójny?
Dziękuję z góry!
29 sty 20:21
kajko: Błagam
! Nikt nie jest w stanie tego rozwiązać
!:(
29 sty 21:05
Miki:
kandydatami do pierwiastków są podzielniki liczby 2
czyli -1, 1, -2, 2
jeżeli x=1 to W(1)=0
czyli W(1) = 1 +a +b +2=0 czyli a+b = - 3
dla x= -1 W(-1) = -1 +a -b +2= 0 to a-b= -1
---------------
2a = - 4 to a= -2
to b= -1
czyli nasz wielomian ma postać:
W(x) = x3 -2x2 -x +2
po rozkładzie na czynniki mamy
x2(x-2) -(x-2) = (x-2)(x2 -1)= (x-2)(x-1)(x+1)
czyli x= 1 x= -1 x= 2
to odp; do przykładu
b) ma trzy rózne pierwiastki wymierne dla a= -2 i b= -1
podobnie policz dla innych kandydatów
1/ x= 2 i x= -2
2/ x= 1 i x= -2
3/ x= 1 i x= 2
4/ x= -1 i x= -2
5/ x= -1 i x= 2 zobaczysz co otrzymasz!
29 sty 21:26
kajko: Bardzo, bardzo dziękuje, pdkt a zrobiłem sam
ale już na drugim nie wiedziałąm za co się
chwycić, dzięki już siadam do analizy
Pozdro stary
29 sty 21:32
Miki:
Jestem kobietą
29 sty 21:48
kajko: w takim razie powinno być Mini
przepraszam za zbytnią społuchwałość
29 sty 22:02