| ⎧ | a1q2+a1q4=40/27 | |
| ⎩ | a1+a1q6=2920/243 | a1≠0 |
| ⎧ | a1(q2+q4)=40/27 | |
| ⎩ | a1(1+q6)=2920/243 | dzielimy równania stronami |
| q2+q4 | 40*243 | ||
= | po uproszczeniu 9q6−73q4−73q2+9=0 | ||
| 1+q6 | 2920*27 |
| 1 | 1 | 1 | ||||
q2=9 ∨ q2= | ⇒ q=−3 ∨ q=3 ∨ q=− | ∨ q= | ||||
| 9 | 3 | 3 |
| 1 | ||
q4=81 ∨ q4= | ||
| 81 |
| 10 | 40 | 10 | 40 | |||||
q2+q4=90 ∨ q2+q4= | , 90a1= | ∨ | a1= | stąd a1= | ||||
| 81 | 27 | 81 | 27 |