| Incosx | |
| cos2x |
| 1 | ||
(Incosx)' = | * (−sinx) = −tgx | |
| cosx |
| Incosx | ||
∫ | = ∫(tgx)' * Incosx = tgx * Incosx − ∫tgx * (−tgx)dx = | |
| cos2x |
| sin2x | 1 − cos2x | |||
= tgx * Incosx + ∫ | dx = tgx * Incosx + ∫ | dx = | ||
| cos2x | cos2x |
| 1 | ||
= tgx * Incosx + ∫ | dx − ∫1dx = tgx * Incosx + tgx − x + C | |
| cos2x |