| 1 | ||
bo wg mnie to ∫arctgxdx= | ||
| 1+x2 |
| 1 | ||
∫arctgxdx= | +C | |
| 1+x2 |
| 1 | ||
∫arctgxdx = ∫(x)'arctgxdx = x * arctgx − ∫x * | dx = (*) | |
| 1 + x2 |
| x | ||
∫ | dx | |
| 1 + x2 |
| 1 | dt | 1 | 1 | ||||
∫ | = | In|1 + t| = | In|1 + x2| | ||||
| 2 | 1 + t | 2 | 2 |
| 1 | ||
(*) = x * arctgx − | In|1 + x2| + C | |
| 2 |
| 1 | ||
∫arctgxdx= f'(x)=1 g(x)=arctgx = xarctgxdx − ∫ | dx... i co z tym dalej? | |
| 1+x2 |
| 1 | ||
f'(x)=x g'(x)= | ||
| 1+x2 |
| dt | ||
∫ | = In|1 + t| −− o to chodzi ? | |
| 1 + t |
| 1 | dt | 1 | ||||
eynik wyszedł ten sam... było coś takiego xarctx − | ∫ | =xarctgx− | ln|t|+C, | |||
| 2 | t | 2 |
| dt | ||
ale nie czaje, czemu | =ln|t| | |
| t |