matematykaszkolna.pl
zadania z pomorskiego konkursu matematycznego dzisiaj pomozecie to rozwiazac: 1.Wyznacz liczby naturalne A,B,C tak aby 22/5= A + 1/ (B+1/C) 2.Tg kąta ostrego alfa jest równy p. Wykaż, że (cos α)4 = p4 + 2p2 +1 3.Oblicz pole trójkąta prostokątnego wiedząc, że wysokość dzieli przeciwprostokątna na odcinki długości 4+7 i 4− 7
10 sty 19:16
Bogdan: Zadanie 1.
22 1 C 

= A +

*

5 
 1 
B +

 C 
 C 
 2 C 
4 +

= A +

 5 BC + 1 
A = 4, C = 2, BC + 1 = 5 ⇒ 2B = 4 ⇒ B = 2
10 sty 22:21
Bogdan: Zadanie 2.
 π 
tgα = p α ≠

+ k*π, k∊C
 2 
sinα sin2 1 − cos2α 

= p / 2

= p2

= p2
cosα cos2 cos2α 
1 

− 1 = p2, itd.
cos2α 
10 sty 22:31
Bogdan: rysunek Zadanie 3. Trzeba tu skorzystać z zależności: h2 = xy
 1 
Pole P =

(x + y)*h
 2 
10 sty 22:34
.: a czemu h2=xy?
11 sty 16:40