| x | ||
∫ | dx | |
| √2 + 4x |
| x | ||
∫ | dx | |
| √4 + x4 |
| t2 − 2 | ||
t2 = 2 + 4x → x = | ||
| 4 |
| tdt | |
= dx | |
| 2 |
| x | t2 − 2 | tdt | ||||
∫ | dx = ∫ | * | ||||
| √2 + 4x | 4t | 2 |
| x | ||
J = ∫ | dx | |
| √4 + x4 |
| dm | 1 | dm | ||||
J = ∫ | = | ∫ | ||||
| √4 + 4m2 | 2 | √1 + m2 |
| t2 − 1 | 1 | 1 | ||||
m2 + 1 = t2 − 2tm + m2 ⇒ m = | = | (t − | ) , t ≠ 0 | |||
| 2t | 2 | t |
| t2 − 1 | t2 + 1 | |||
√m2 + 1 = t − m = t − | = | |||
| 2t | 2t |
| 1 | 1 | t2 + 1 | ||||
dm = | (1 + | }dt = | dt | |||
| 2 | t2 | 2t2 |
| 1 | dm | |||
J = | ∫ | |||
| 2 | √m2 + 1 |
| 1 | t2 + 1 | t2 + 1 | 1 | dt | 1 | |||||||
J = | ∫ | / | dt = | ∫ | = | ln|t| | ||||||
| 2 | 2t2 | 2t | 2 | t | 2 |
| 1 | ||
j = | ln|m + √m2 + 1| + C | |
| 2 |
| x2 | ||
Teraz tylko podstawić m = | i po hałasie. | |
| 2 |