opis
kasia: 23, 314, x2, y10,5x+1, 234x, 4n2, 10n3−1 5x+1, 234x,
4n2,10n3−1 x3, a21, a23, b311, bn−1, c232n−1 c2=a2+b2 \sqrt2,
\sqrt{34}, \sqrt{x2+y2} \sqrt{2+\sqrt2} \root 3 \of 2, \root n \of {2n+3n}, \root n+1 \of
{10n+2} {1\over2}, {n+5\over n+3}, {x+{1\over2}\over x2−3} 1{1\over3}+3{2\over7}−4{3\over10}
\textstyle 1{1\over3}+3{2\over7}−4{3\over10} + \displaystyle {3+{1\over2}\over3}
2{1\over2}n−3, n + {1\over n + {1\over n + {1\over n}}} {n\choose k} = {n!\over k!\cdot
(n−k)!} 10! = 1 \cdot 2 \cdot 3 \dots 9 \cdot 10 \sumn=14 n = 1+2+3+4 f'(x)=3x−1,
\int\limits−\infty+\infty x dx = 0 \sin2\alpha+\cos2\beta=1 \sin2\alpha =
2\sin\alpha\cos\alpha \tg30\circ={\sqrt3\over3}, \ctg45\circ=1 \limx\to2x2=4,
\limx\to−\inftyx2=\infty \log10 1000 = 3 3>4, 2x−1 \xle0 , 2x+3\xge0, 4\not=5 p \vee q,
p \wedge q, p \Rightarrow q, p \Leftrightarrow q A \cup B, A \cap B, A \subset B, A\setminus B
\emptyset, x\in A, y\not\in A |x|=\cases{ x & gdy $x\xge 0$ \cr −x & gdy $x<0 $ \cr} \left\{
\eqalign{ 10x−y &= 5\cr x+y &= 3\cr } \right.
8 sty 00:03
kasia: pomyłka
8 sty 00:04
huncek: XD
8 sty 00:42
Jack:
takie pomyłki bolą najbardziej....
8 sty 00:44
huncek: kinda
8 sty 00:46