| 1 | ||
y' = − | (e1/a)−x | |
| a |
| 1 | ||
y'' = | (e1/a)−x | |
| a2 |
| (−1)n | ||
y(n) = | *e−x/a | |
| an |
| (−1)n−1 * (n−1)! | ||
y(n) = | ||
| xn |
| 1 | ||
y(n) = (√x)(n) = (x1/2)(n) = ( | *x−1/2)(n−1) = | |
| 2 |
| 1 | 1 | 1 | 1 | 3 | ||||||
= [ | *(− | )x−3/2](n−2) = [ | *(− | )(− | )x−5/2](n−3) = | |||||
| 2 | 2 | 2 | 2 | 2 |
| 1 | 1 | 3 | 5 | |||||
= [ | *(− | )(− | )(− | )x−7/2](n−4) = | ||||
| 2 | 2 | 2 | 2 |
| 1 | 1*3*5*7 | |||
= [(−1)5−1* | * | x−9/2](n−5) = | ||
| 2 | 25−1 |
| 1*3*5*7 | ||
= [(−1)5−1* | x−1/2(10−1)](n−5) = | |
| 25 |
| (|2n−3|)!! | ||
= (−1)n−1* | *x−1/2(2n−1) = | |
| 2n |
| (−1)n−1*(|2n−3|)!! | 1 | |||
= | * | = | ||
| 2n | (√x)2n−1 |
| (−1)n−1*(|2n−3|)!! | 1 | |||
= | * | = | ||
| 2n | xn:√x |
| (−1)n−1*(|2n−3|)!! | 1 | |||
= | * | . | ||
| 2n | xn−1*√x |