| x2 | x2+1−1 | 1 | |||
= | = 1− | ||||
| x2+1 | x2+1 | x2+1 |
| 1 | ||
J = ∫ [1− | ]*arctgx dx = | |
| x2+1 |
| arctgx | ||
∫arctgx dx −∫ | dx | |
| 1+x2 |
| 1 | ||
u = arctgx u'= | ||
| 1+x2 |
| x | ||
J1= x*arctgx − ∫ | ||
| 1+x2 |
| dt | ||
xdx = | ||
| 2 |
| dt | ||
J1= x*arctgx − ∫ | = x*arctgx −12ln|t| = | |
| 2t |
| arctgx | ||
J2 = ∫ | dx | |
| 1+x2 |
| 1 | ||
dt = | dx | |
| 1+x2 |