| f | ||
cosx−y2 = | ||
| 2sinx+y2 |
| e | ||
cosx−y2= | ||
| 2cosx+y2 |
| f | e | ||
= | |||
| 2sinx+y2 | 2cosx+y2 |
| f | ||
sinx+y2= | cosx+y2 | |
| e |
| f2 | |
cos2x+y2+cos<span style="font-family:times; margin-left:1px; margin-right:1px">x+y2=1 /*e2 | |
| e2 |
| e2 | ||
cos2x+y2= | ||
| e2+f2 |
| e | ||
cosx+y2= ± | ||
| √e2+f2 |
| f2 | |
cos2x+y2+cos2x+y2=1 /*e2 | |
| e2 |
| x + y | x + y | |||
cos2α = 2cos2α − 1 ⇒ cos(x + y) = cos(2* | ) = 2cos2( | ) − 1 | ||
| 2 | 2 |
| x + y | x − y | |||
e = cosx + cosy = 2cos | cos | |||
| 2 | 2 |
| x + y | x − y | |||
f = sinx + siny = 2sin | cos | |||
| 2 | 2 |
| e2 |
| |||||||||||
= | ||||||||||||
| f2 |
|
| e2 |
| |||||||||||
= | ||||||||||||
| f2 |
|
| x + y | e2 | |||
cos2 | = | |||
| 2 | e2 + f2 |
| e2 | e2 − f2 | |||
cos(x + y) = 2 * | − 1 = | |||
| e2 + f2 | e2 + f2 |
).
cosx + cosy = e
sinx + siny = f
cos(x+y) = ?
Niech:
i2 = −1
a = eix
b = eiy
Wtedy:
| 1 | ||
sinx = | (a − a−1) | |
| 2i |
| 1 | ||
cosx = | (a + a−1) | |
| 2 |
| 1 | ||
siny = | (b − b−1) | |
| 2i |
| 1 | ||
cosy = | (b + b−1) | |
| 2 |
| 1 | ||
cos(x+y) = | [ab + (ab)−1] | |
| 2 |
| 1 | 1 | ||
(a + a−1) + | (b + b−1) = e /*2 | ||
| 2 | 2 |
| 1 | 1 | ||
(a − a−1) + | (b − b−1) = f /*2i | ||
| 2i | 2i |
| 1 | 1 | a + b | |||
+ | = e − if → | = e − if | |||
| a | b | ab |
| e + if | |
= e − if | |
| ab |
| e + if | ||
ab = | ||
| e − if |
| 1 | 1 | e + if | e − if | |||||
cos(x+y) = | [ab + (ab)−1] = | ( | + | ) = | ||||
| 2 | 2 | e − if | e + if |
| 1 | e2 − f2 + 2ief +e2 − f2 − 2ief | e2 − f2 | ||||
= | * | = | . ![]() | |||
| 2 | e2 + f2 | e2 + f2 |