Oblicz sumę n początkowych wyrazó ciągu (an) , w którym :
a1= 1, a2= 11, a3= 111, a4= 1111, ....
| 1 | ||
Sn= | ( 9+99+999+...... + 9999..... 9)
| |
| 9 |
| 1 | 1 | |||
Sn= | ( 10−1 + 102−1 + 103−1 +....... + 10n−1)= | (10+102+...+10n −1*n)
| ||
| 9 | 9 |
| 10n−1 | 10(10n−1) | |||
to: Sn(bn)= 10* | = | |||
| 10−1 | 9 |
| 1 | 10(10n−1) | 10(10n−1)−9n | ||||
zatem Sn(an) = | *( | −n)= | ||||
| 9 | 9 | 81 |
| 10*999 −27 | 9963 | |||
S3= | = | = 123 = 1+11+111 = 123 zatem ok
| ||
| 81 | 81 |