| dx | dx | |||
∫ | = lim | |||
| x2 + 4 | x2 + 4 |
| dx | ||
∫ | = ln[a2+4] − ln[b2+4] = ? Nie wiem czy tak powinno byc bo ile jest ln[∞] ? | |
| x2 + 4 |
| 1 | ||
∫x−2= − | x−2 | |
| 2 |
| 1 | 1 | |||
lim [ − | x−2] = 0 + | ? Dobrze jest? | ||
| 2 | 2 |
| dx | ||
∫ | = lnx | |
| x |
| 1 | ||
− | dt=dx | |
| 2 |
| 1 | 1 | 1 | 1 | |||||
=− | ∫t dt=− | * | t2 + c = − | * x−2 o to chodzi? | ||||
| 2 | 2 | 2 | 4 |
| x−1 | ||
2. złe podstawienie... Można po prostu to policzyć: ∫x−2 dx= | =−x−1 (+c) | |
| −1 |