β = 180o − α, sinβ = sin(180o − α) = sinα
| 1 | ||
P1 = 120 ⇒ | ad*sinα = 120 | |
| 2 |
| 1 | 1 | |||
P2 = 200 ⇒ | ab*sinβ = 200 ⇒ | ab*sinα = 200 | ||
| 2 | 2 |
| 1 | ||
P3 = 300 ⇒ | bc*sinα = 300 | |
| 2 |
| 1 | 1 | |||
P4 = | cd*sinβ = | cd*sinα | ||
| 2 | 2 |
| 1 | 1 | 1 | 1 | |||||
Zauważamy, że: | ad*sinα * | bc*sinα = | ab*sinβ * | cd*sinα | ||||
| 2 | 2 | 2 | 2 |
| P1 * P3 | ||
czyli: P1 * P3 = P2 * P4 ⇒ P4 = | ||
| P2 |
| 120 * 300 | ||
W tym zadaniu: P4 = | = ... | |
| 200 |