Porównaj liczby
Paulina: x= 5log2536−1 y=12log23 +log22√3
16 gru 22:07
Eta:
a
logab= b
5
log2536 *5−1
| | 1 | |
log2536= log52 (62)= |
| *2log56
|
| | 2 | |
to
| | 1 | | 6 | |
x= 5log56 * |
| = |
| = 115
|
| | 5 | | 5 | |
y= log2√3*2√3= log26
log26= k , to z def. logarytmu 2k= 6
22= 4 , 23= 8 to k€ (2, 3)
zatem: y= log26 € (2,3) > x
odp: y >x
16 gru 22:34