Julka: Proszę o pomoc z tym zadaniem z ciągów:
Które z wyrazów ciągu (an) są równe 0?
an=n3-7n2+11n-5 kreska ułamkowa 3n+2
18 sty 18:09
Julka: Heeej, umie to ktoś rozwiązać?
18 sty 21:11
Mickej: np ja

nic wielkiego wystarczy ze przyrównasz to wyrażenie do 0 i rozwiążesz jak zwykle równanie
18 sty 21:14
kier:
a1=0 -- pierwszy! i a5=0 --- piąty !
bo rozkładamy licznik na czynniki
n3 -n2 - 6n2 +6n +5n -5= n2(n-1) -6n( n-1) +5(n-1)=
= (n-1) ( n2 -6n +5) = (n-1)( n2 - 5n - n +5)=
(n-1)[ n(n-5) - ( n+5)]= (n-1) ( n - 5)( n- 1)
po rozkładzie widać miejsca zerowe
dla n= 1 i n=5
więc a1 =0 i a5=0
po podstawieniu za n= 1 i n=5
otrzymasz w liczniku zero czyli ok!
18 sty 21:15
Julka: hym, to to wiem, tylko nie wiem co zrobić z tym sześcianem, bo w sql rozwiązywaliśmy
tylko do kwadratu
18 sty 21:15
kier:
No to podałam Ci grupowanie wyrazó w
i juz tego sześcianu nie bedzie! OK!
18 sty 21:19
Julka: dzięki
18 sty 21:20