

POMOCY

| π | π | 1 | ||||
sin(x + | ) * sin(x − | ) = | ||||
| 6 | 6 | 2 |
| π | π | π | π | 1 | ||||||
(sinxcos | + sin | cosx)(sinxcos | − sin | cosx) = | ||||||
| 6 | 6 | 6 | 6 | 2 |
| 3 | 1 | 1 | |||
sin2x − | cos2x = | / * 4 | |||
| 4 | 4 | 2 |
| 1 | ||
cos2x = − | ||
| 2 |
| 2π | 2π | |||
2x = | + 2kπ lub 2x = − | + 2kπ | ||
| 3 | 3 |
| π | π | |||
x = | + kπ lub x = − | + kπ | ||
| 3 | 3 |
w odp mam x∊{13π,23π,43π,53π} i czy tu wynika z tego rozwiązania?
| π | π | |||
sin(x+ | )sin(x− | )= | ||
| 6 | 6 |
| π | π | π | π | |||||
= (sinxcos | +cosxsin | )(sinxcos | −cosxsin | )= | ||||
| 6 | 6 | 6 | 6 |
| √3 | 1 | √3 | 1 | |||||
=( | sinX+ | cosX)( | sinX− | cosX)= | ||||
| 2 | 2 | 2 | 2 |
| 3 | 1 | 1 | ||||
= | sin2X− | cos2X= | ||||
| 4 | 4 | 2 |
| 3 | ||
sin2X= | ...a dalej już wiesz... | |
| 4 |
dziękuje Wam
| π | π | 1 | ||||
sin(x + | )sin(x − | ) = | / * (−2), x ∊ <0, 2π> | |||
| 6 | 6 | 2 |
| π | π | |||
−2sin(x + | )sin(x − | ) = −1 | ||
| 6 | 6 |
| α + β | α − β | |||
Korzystamy ze wzoru: cosα − cosβ = −2sin | sin | |||
| 2 | 2 |
|
| π | ||||||||||||||||||||||
−2sin | sin | = −1 ⇒ cos2x − cos | = −1 | |||||||||||||||||||||
| 2 | 2 | 3 |
| π | 1 | π | ||||
cos2x = cos | − 1 ⇒ cos2x = − | ⇒ cos2x = −cos | ||||
| 3 | 2 | 3 |
| 2 | ||
cos2x = cos | π | |
| 3 |
| 2 | 1 | 2 | 1 | |||||
2x = | π + k*2π / * | lub 2x = − | π + k*2π / * | , k∊C | ||||
| 3 | 2 | 3 | 2 |
| 1 | 1 | |||
x = | π + k*π lub x = − | π + k*π | ||
| 3 | 3 |
| 1 | 1 | |||
dla k = 0: x = | π lub x = − | π (poza przedziałem) | ||
| 3 | 3 |
| 1 | 2 | |||
dla k = 1: x = 1 | π lub x = | π | ||
| 3 | 3 |
| 1 | 2 | |||
dla k = 2: x = 2 | π (poza przedziałem) lub x = 1 | π | ||
| 3 | 3 |
| 1 | 2 | 1 | 2 | |||||
Odp.: x ∊ { | π, | π, 1 | π, 1 | π} | ||||
| 3 | 3 | 3 | 3 |