| √x2+1−√x+1 | ||
lim | ||
| 1−√x+1 |
| √x2+1−√x+1 | |
* | |
| 1−√x+1 |
| (1+√x+1)(√x2+1+√x+1) | ||
* | = | |
| (1+√x+1)(√x2+1+√x+1) |
| (x2+1−x−1)(1+√x+1) | ||
= | = | |
| (1−x−1)(√x2+1+√x+1) |
| (x2−x)(1+√x+1) | ||
= | = | |
| (−x)(√x2+1+√x+1) |
| (x−1)(1+√x+1) | ||
= | = | |
| (−1)(√x2+1+√x+1) |
| (0−1)(1+√0+1) | ||
= | = | |
| (−1)(√02+1+√0+1) |
| −1(1+1) | ||
= | =1 ![]() | |
| −1(1+1) |