AS:
| | n | |
S1 = 1 + 2 + 3 + ... + n = |
| *(n + 1) |
| | 2 | |
S2 = 1
2 + 2
2 + ... + n
2
Korzystam z tożsamości
(x + 1)
3 − x
3 = 3x
2 + 3x + 1
dla x = 1,2,3,..,n otrzymujemy
2
3 − 1
3 = 3*1
2 + 3*1 + 1
3
3 − 2
3 = 3*2
2 + 3*2 + 1
4
3 − 3
3 = 3*3
2 + 3*3 + 1
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(n + 1)
3 − n
3 = 3n
2 + 3n + 1 stronami dodajemy
(n + 1)
3 − 1
3 = 3(1
2 + 2
2 + 3
2 + ... + n
2) + 3(1 + 2 + 3 + ... + n) + n
Oznaczając 1
2 + 2
2 + ... + n
2 przez S2 mamy
| | n | |
(n + 1)3 − 13 = 3S2 + 3* |
| (n + 1) + n |
| | 2 | |
| | 3 | | 3 | |
n3 + 3n2 + 3n + 1 − 1 = 3S2 + |
| n2 + |
| n + n |*2 |
| | 2 | | 2 | |
2n
3 + 6n
2 + 6n = 6S2 + 3n
2 + 3n + 2n
6S2 = 2n
3 + 3n
2 + n
| | n | |
S2 = |
| n(n + 1)(2n + 1) |
| | 6 | |
Suma sześcianów
S3 = 1
3 + 2
3 + 3
3 + ... + n
3
korzystam z tożsamości
(x + 1)
4 − x
4 = 4x
3 + 6x
2 + 4x + 1
dla x = 1,2,3,...,n otrzymujemy
2
4 − 1
4 = 4*1
3 + 6*1
2 + 4*2 + 1
3
4 − 2
4 = 4*2
3 + 6*2
2 + 4*2 + 1
4
4 − 3
4 = 4*3
3 + 6*3
2 + 4*3 + 1
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(n + 1)
4 − n
4 = 4n
3 + 6n
2 + 4n + 1
Stronami dodajemy
(n + 1)
4 − 1
4 = 4*(1
3 + 2
3 + ... + n
3) + 6(1
2 + 2
2 + .. +n
2) + 4(1 + 2 + ... + n) + n
| | n | | n | |
n4 + 4n3 + 6n2 + 4n + 1 − 1 = 4S3 + 6* |
| (n + 1)*(2n + 1) + 4 |
| (n + 1) + n |
| | 6 | | 2 | |
4S3 = n
4 + 4n
3 + 6n
2 + 4n − n(2n
2 + 3n + 1) − 2n(n + 1) − n
4S3 = n
4 + 2n
3 + n
2
4S3 = n
2(n
2 + 2n + 1)
| | 1 | |
S3 = |
| n2*(n + 1)2 = (1 + 2 + 3 + ... + n)2 |
| | 4 | |