| x2 + a | x2 | a | ||||
J = ∫√x2 + adx = ∫ | dx = ∫ | dx + ∫ | dx | |||
| √x2 + a | {√x2 + a} | √x2 + a |
| a | ||
J2 = ∫ | dx | |
| √x2 + a |
| t2 − a | ||
x2 + a = t2 − 2tx + x2 ⇒ x = | i t ≠ 0 | |
| 2t |
| t2 − a | t2 + a | |||
√x2 + a = t − x = t − | = | |||
| 2t | 2t |
| t2 + a | t2 − a | |||
x = t − | = | |||
| 2t | 2t |
| 1 | a | 1 | a | |||||
x = | (t − | ) dx = | (1 + | )dt | ||||
| 2 | t | 2 | t2 |
| 1 | a | t2 + a | dt | |||||
J2 = a∫[ | (1 + | )/( | )]dt = a | = aln|t| | ||||
| 2 | t2 | 2t | t |
| 2x | ||
du = | dx v = x | |
| 2√x2 + a |
| 2x | ||
J = x√x2 + a − ∫x | }dx | |
| 2√x2 + a |
| x2 | ||
J = x√x2 + a − ∫ | dx | |
| √x2 + a |
| x | ||
J1 = x√x2 + a − J1 ⇒ 2J1 = x√x2 + a ⇒ J1 = | √x2 + a | |
| 2 |
| x | ||
J = | √x2 + a + aln|t + √x2 + a| + C | |
| 2 |
| 1 | ||
J1 = | (x√x2 + a − J2) | |
| 2 |
| 1 | 1 | |||
J1 = | x√x2 + a − | J2 | ||
| 2 | 2 |
| 1 | 1 | |||
J = J1 + J2 = | x√x2 + a − | J2 + J2 | ||
| 2 | 2 |
| 1 | 1 | |||
J = | x√x2 + a + | J2 | ||
| 2 | 2 |
| 1 | a | |||
J = | x√x2 + a + | ln(|x + √x2 + a| + C | ||
| 2 | 2 |