| 3n−1 | ||
limn→∞[n32(√n3+1 − √n3−2)] + limn→∞( | )n+4 | |
| 3n+1 |
| a2−b2 | ||
pierwsza granica i pierwszy nawias łukowy zastosuj a−b= | ||
| a+b |
| 3n−1 | 3n+1−2 | −2 | |||
= | =1+ | ||||
| 3n+1 | 3n+1 | 3n+1 |
| −2 | ||
limn→∞(1+ | )n+4 | |
| 3n+1 |
| −2 | ||
(1+ | )3n+1 −−> e−2 | |
| 3n+1 |
| n+4 | 1 | |||
a w wykladniku potegi bedzie | −−−> | |||
| 3n+1 | 3 |