π | ||
sin | *sinx≤cos2x | |
4 |
√2 | |
sinx≤cos2x | |
2 |
√2 | |
sinx−cos2x≤0 | |
2 |
√2 | |
sinx−(1−sin2x)≤0 | |
2 |
√2 | ||
sin2x− | sinx−1≤0 | |
2 |
1 | 9 | |||
Δ= | +4= | |||
2 | 2 |
3 | 3√2 | |||
√Δ= | = | |||
√2 | 2 |
√2 | ||
sinx1= (−2√2/2)/2=− | ||
2 |
2√2 | ||
sinx2= | =√2 nie należy do zbioru rozwiązan | |
2 |
√2 | ||
sinx=− | ||
2 |
5 | ||
sinx=sin | π | |
4 |
5 | ||
x1= | π+2kπ k∊Z | |
4 |
5 | ||
x2= π− | π+2kπ | |
4 |
π | ||
x2= − | +2kπ k∊Z | |
4 |
√2 | ||
sin2x+ | sinx−1=0 | |
2 |
√2 | ||
sinx2= | ||
2 |
π | ||
x= | +2kπ k∊Z | |
4 |
π | 3 | |||
x=π− | +2kπ= | π+2kπ k∊Z | ||
4 | 4 |
√2 | 2 | 2 | ||||
sin2x + 2* | sinx + | − 1 − | ≤ 0 | |||
4 | 16 | 16 |
√2 | 18 | |||
(sinx + | )2 ≤ | |||
4 | 16 |
3√2 | √2 | 3√2 | ||||
− | ≤ sinx + | ≤ | ||||
4 | 4 | 4 |
2√2 | √2 | |||
−√2 ≤ sinx ≤ | = | |||
4 | 2 |
√2 | ||
sinx ≤ | ||
2 |