


Oblicz granice ciagu:
| (2n)3n+4 | ||
cn= | ||
| (2n−5)3n+4 |
| (2n)3n + 4 | 2n | |||
cn = | = ( | )3n + 4 = | ||
| (2n − 5)3n + 4 | 2n − 5 |
| 5 | 52 | |||
= (1 + | )3n + 4 = (1 + | )3(n − 5/2) + 23/2 = | ||
| 2n − 5 | n − 52 |
| 52 | 52 | |||
= ((1 + | )n − 5/2)3 * (1 + | )23/2 | ||
| n − 52 | n − 52 |
| 52 | ||
((1 + | )n − 5/2)3 → (e5/2)3 | |
| n − 52 |
| 52 | ||
(1 + | )23/2 → 1 | |
| n − 52 |
| 2n | 2n | n | |||
= | = | = | |||
| 2n−5 | 2(n−52) | n−52 |
| n−52+52 | |
= | |
| n−52 |
| 52 | ||
1+ | ||
| n−52 |
| 52 | ||
cn = (1+ | )3n+4 = | |
| n−52 |
| 52 | 52 | |||
(1+ | )3n*(1+ | )4 = | ||
| n−52 | n−52 |
| 52 | 52 | |||
[(1+ | )n]3*(1+ | )4 → ..... | ||
| n−52 | n−52 |
a wiecie moze jak obliczyc granice takieigo ciągu?:
| 1 | 1 | 1 | ||||
an=(1− | )(1− | )...(1− | ) | |||
| 22 | 32 | n2 |
| 22−1 | 32−1 | n2−1 | ||||
an = | * | ...* | = | |||
| 22 | 32 | n2 |
| (2−1)(2+1) | (3−1)(3+1) | (n−1)(n+1) | |||
* | ...* | = | |||
| 22 | 32 | n2 |
| 1*3*2*4*3*5*4*6*....*(n−2)*n*(n−1)(n+1) | |
= | |
| 22*33...n2 |
| [1*2*3...*(n−1)]*[3*4*5...(n+1)] | |
= | |
| (1*2*3....n)2 |
| ||||||||||
= | ||||||||||
| (n!)2 |
| (n−1)! | (n+1)! | ||
* | = | ||
| n! | 2n! |
| 1 | n+1 | n+1 | 1+1n | 1 | |||||
* | = | = | → | ||||||
| n | 2 | 2n | 2 | 2 |