| 5*2n+3*3n+4n | ||
a) limn→∞ | ||
| 2*2n+3n+5*4n |
| 20+21+...+2n | ||
c) limn→∞ | ||
| 50+51+...+5n |
| 2n+3 | ||
d) limn→∞ ( | )6n+1 | |
| 2n−1 |
| 2n+3 | 4 | 4 | 4 | |||||
lim( | )6n+1 = lim (1+ | )6n+1 = lim(1+ | )6n * (1+ | ) | ||||
| 2n−1 | 2n−1 | 2n−1 | 2n−1 |
| 4 | 4 | 4 | ||||
= lim ((1+ | )2n)3 * lim(1+ | ) = lim ((1+ | )2n)3 * 1 = | |||
| 2n−1 | 2n−1 | 2n−1 |
| 4 | 4 | |||
lim [(1+ | )2n−1*(1+ | )]3 = | ||
| 2n−1 | 2n−1 |
| 4 | 4 | |||
lim [((1+ | )(2n−1)/4)4*(1+ | )]3 = (e4*1)3=e12 | ||
| 2n−1 | 2n−1 |