matematykaszkolna.pl
nie mam pojęcia jak to rozwiązać..proszę o rozwiązanie ;/// ; ): Kajakarz płynie po stojącej wodzie z szybkością 10km/h. Płynąc z prądem rzeki, pokonuje trasę długości 24 km w czasie o godzinę krótszym, niż zrobiłby to, płynąc pod prąd. Prąd rzeki na szybkość ?
11 lis 14:38
Marcin Wolanowski: rozwiaz uklad rownan: 1) 24=(10+y)(t−1) 2) 24=t(10−y) gdzie y prad rzeki
11 lis 14:43
Tomek.Noah: czy szybkosc rzeki wynosi 12
11 lis 14:44
Tomek.Noah: aa czyli dobrze emotkaajj znowu zly wzor ale zapis poprawny emotka
11 lis 14:45
Marcin Wolanowski: pomyłka sie wkradła za szybko piszę emotka 1 powinna wygladać 10*(t−1)
11 lis 14:45
Marcin Wolanowski: chwilka za bardzo sie spiesze zaraz rozwiaze emotka
11 lis 14:46
; ): ma wyjść 2 km/h
11 lis 14:46
Marcin Wolanowski: jednak bylo ok emotka
11 lis 14:47
Basia: v0=10 v1=v0+vp=10+vp v2=v0−vp=10−vp v1*t=24 v2*(t+1)=24 (10+vp)*t=24 (10−vp)*(t+1)=24 10t+vp*t=24 10t+10−vp*t−vp=24 10t+vp*t=10t+10−vp*t−vp 2vp*t=10−vp
 10−vp 
t =

 2vp 
 10−vp 
(10+vp)*

=24
 2vp 
(10+vp)(10−vp)=48vp 100−vp2−48vp=0 vp2+48vp−100=0 Δ=482−400 itd. dokończ
11 lis 14:48
; ): a mogłbyś napisać rozwiązanie tego równania, nie jestem w tym dobra. /////
11 lis 14:49
; ): ok
11 lis 14:50
Marcin Wolanowski: no to analiza normalna predkosc kajakarza to 10 km/h (bez pradu rzeki) niech y− to predkosc nurtu rzeki wtedy: 1 Z pradem rzeki kajakarz ma predkosc 10+y i plynie w czasie t−1 2 pod prad analiza od jego predkosci odejmujemy predkosc pradu rzeki czyli kajakarz ma predkosc: 10−y a plynie w czasie o h dluzszym niz w pdpk 1 zatem ma czas t Podstawiajac do wzoru S=V*t mamy uklad ten co na poczatku. Wg mnie ofcors
11 lis 14:50
; ): basiu, nie rozumiem twojego zapisu
11 lis 14:51
; ): ok
11 lis 14:52
; ): woda płynąca jednocześnie z kranów A B C napełnia zbiornik w ciągu 4h. Napełnienie zbiornika wodą płynącą jedynie z kranu A trwa 10 h,a z samego kranu B 15 h. Ile czasu zajmie napełnienie zbiornika wodą płynącą wyłącznie z kranu C? a takie zadanie?
11 lis 14:53
; ): po rozwiązaniu równianiaw 1 zadaniu nie wyszło mi 2 /////
11 lis 15:00
Marcin Wolanowski: ja bym robił tak niech x− wydajnosc kranu A y− wydajnosc kranu B i z− Wydajnosc kranu C(wydajnosc na h). Oznaczmy przez P prace do wykonania wówczas 4(x+y+z)=P 10x=P 15y=P Masz uklad 3 równan podstawiasz 2 ostatnie do pierwszego i otrzymujesz
 P P 
4(

+

+z)=P
 10 15 
 35 
4(

z)=P
 30 
14 

z=P
3 
czyli trwa to 4 i 2/3 h czyli 4h 40 min
11 lis 15:06
; ): ?
11 lis 15:07
; ): aha
11 lis 15:07
; ): dzięki
11 lis 15:07