| f(a +h) − f(a) | ||
Korzystając ze wzoru lim | ||
| h |
| √2(x+h) + 3(x +h) | √2x+2h + 3x +3h | |||
f'(x)= lim | =lim | |||
| h | h |
| √2x+2h + √2x + 3x | ||
f'(x) = | ||
| h |
| 1 | 1 | 1+3√2x | ||||
f'(x) = | *2+3 = | +3 = | = | |||
| 2√2x | √2x | √2x |
| √2x(1+3√2x) | 6x+√2x | ||
= | |||
| 2x | 2x |
| √2x +2h + 3x + 3h + √2x + 3x | √2x +2h + 6x + 3h + √2x | |||
f'(x) =lim | =lim | |||
| h | h |
| f(x+h)−f(x) | |
= | |
| h |
| [ √2(x+h)−√2x ] + 3h | |
= | |
| h |
| √2(x+h)−√2x | 3h | ||
+ | = | ||
| h | h |
| √2(x+h)−√2x | |
+3 | |
| h |
| √2(x+h)−√2x | √2(x+h)+√2x | ||
* | +3= | ||
| h | √2(x+h)+√2x |
| 2(x+h)−2x | |
+3 = | |
| h(√2(x+h)+√2x) |
| 2h | |
+3= | |
| h(√2(x+h)+√2x |
| 2 | |
+3 → (przy h→0) | |
| √2(x+h)+√2x |
| 2 | |
+3= | |
| √2x+√2x |
| 2 | |
+3= | |
| 2√2x |
| 1 | |
+3 | |
| √2x |
| f(x+h) − f(x) | ||
f'(x) = limh→0 | ||
| h |