| 2 | ||
an=(1+ | )5n+1 | |
| n |
| 2 | 2 | 2 | 2 | |||||
(1 + | )5n * (1 + | ) = ((1 + | )n)5 * (1 + | ) | ||||
| n | n | n | n |
| 2 | 1 | |||||||||
(1 + | )n = ((1 + | )n/2)2 −− to dąży do e2 | ||||||||
| n |
|
| 2 | ||
(1 + | ) a to do 1 | |
| n |
| 2 | ||
limn−>∞(1 + | )5n + 1 = (e2)5 = e10 | |
| n |
| 2 | 2 | n | 2 | 10n+2 | ||||||
lim n→∞ (1+ | )5n+1=lim n→∞ (1+ | ) | * | *5n+1=e | =e10 | |||||
| n | n | 2 | n | n |
| n | 2 | |||
Tam powinno być do potęgi | * | *5n+1, nie wiem dlaczego tego nie widać. | ||
| 2 | n |