longer: 1. Udowodnij, że różnica trzycyfrowych liczb, z których jedna zapisana jest tymi samymi
cyframi , co druga, lecz w odwrotnym porządku dzieli się przez 99.
2.Wykaż że różnica kwadratów dwóch dowolnych liczb nieparzystych jest podzielna przez 8.
3 sty 11:32
gharson: 1.
a,b,c-cyfry
100a + 10b + c - pierwsza liczba
100c + 10b + a - druga liczba
(100a + 10b + c) - (100c + 10b + a) = 90a -90c = 90(a-c)
3 sty 11:48
Basia:
mały błędzik na samym końcu
= 99a - 99c = 99(a-c)
3 sty 12:17
Basia:
(2k+1)2 - (2l+1)2=4k2+4k+1 - (4l2+4l+1) = 4(k2-l2) +4(k-l)=
4(k-l)(k+l) + 4(k-l) = 4(k-l)(k+l+1)
1. k,l parzyste ⇒ k-l też parzysta czyli k-l = 2m
= 4*2m*(k+l+1)=8m(k+l+1)
2. k,l nieparzyste ⇒ k-l parzysta i dalej jak w 1
3. k parzysta, l nieparzysta (lub odwrotnie) ⇒ k+l nieparzysta ⇒ k+l+1 parzysta czyli
k+l+1=2m
= 4(k-l)*2m=8m(k-l)
czyli w każdym przypadku jest podzielne przez 8
3 sty 12:23
longer: dzięki serdeczne basiu
3 sty 12:33