| AM | BN | PC | |||
= | = | = k. Wyznacz k, jeśli wiadomo, że pole trójkąta MNP stanowi | |||
| MB | NC | PA |
| 7 | ||
pola trójkąta ABC. | ||
| 25 |
| c | ||
|AM|=k*|MB| , AM+MB=c ⇔k*MB+MB=c, MB= | ||
| k+1 |
| a | ||
|BN|=k*|NC| ,BN+NC=a⇔k*NC+NC=a, NC= | ||
| k+1 |
| b | ||
|PC|=k*|PA| PC+PA=b⇔k*PA+PA=b, PA= | ||
| k+1 |
| 1 | 1 | k*c | b | |||||
PΔAMP= | *|AM|*|PA|*sinα= | * | * | *sinα | ||||
| 2 | 2 | k+1 | k+1 |
| 1 | k*c*b | |||
PΔAMP= | * | *sinα | ||
| 2 | (k+1)2 |
| 1 | ||
PΔABC= | *b*c*sinα | |
| 2 |
| PΔAMP |
| k | |||||||||||||||
= | = | ⇔ | |||||||||||||||
| PΔABC |
| (k+1)2 |
| k | ||
PΔAMP= | *PΔABC | |
| (k+1)2 |
| k | ||
PΔMBP= | *PΔABC | |
| (k+1)2 |
| k | ||
PΔNCP= | *PΔABC | |
| (k+1)2 |
| 3k | ||
S=PΔABC− | *PΔABC | |
| (k+1)2 |
| 3k | ||
S=PΔABC*(1− | ) | |
| (k+1)2 |
| S | 3k | ||
=(1− | ) | ||
| PΔABC | (k+1)2 |
| 3k | 7 | |||
1− | = | |||
| (k+1)2 | 25 |
| 2 | 3 | |||
k= | lub k= | |||
| 3 | 2 |