matematykaszkolna.pl
Efka: log(3x + 9) - log(3x - 3) = log(3x - 3) - log2 jak to rozwiązaćemotikonka?
2 sty 10:53
wjmm: korzystając z twierdzenia, że loga(b)-loga(c)=loga(b/c) możemy zapisać log[(3x+9)/(3x-3)]=log[(3x-3)/2], czyli logarytmy możemy usunąć bo takie same podstawy (3x+9)/(3x-3)=(3x-3)/2 2*3x+18=32x-6*3x+9 32x-8*3x-9=0 pomocnicza: t=3x, t≥0 3t2-8t-9=0 dalej trzeba obliczyć t, podstawić pod t=3x i wyliczyć x, poradzisz sobie
2 sty 11:50
wjmm: Sorry, tam ma być na końcu: t2-8t-9=0, a nie 3t2-8t-9=0emotikonka czyli Δ=100, Δ=10 t1=-1- sprzeczość, bo t≥ lub t2=9 3x=9 3x=32 wtedy i tylko wtedy gry x=2emotikonkaemotikonka Oczywiście pamiętaj o wyznaczeniu dziedziny na początku: 3x+9>0 i 3x-3>0
2 sty 11:54
Efka: ok, dziękuję emotikonka tyko problem w tym, że delta z tego równania wychodzi niewymierna. a wiem, że x ma być równe 2, według odpowiedzi w książce...
2 sty 12:00
Efka: a, no widzisz emotikonka ok
2 sty 12:00