| x2 + 2 | ||
∫ | dx | |
| √1−x−x2 |
| x2+2 | ||
∫ | dx = | |
| √1−x−x2 |
| 7 | 1 | (−1−2x) | 9 | 1−x−x2 | ||||||
∫(− | x− | ) | dx + | ∫ | dx | |||||
| 5 | 5 | √1−x−x2 | 5 | √1−x−x2 |
| x2+2 | ||
∫ | dx = | |
| √1−x−x2 |
| 2 | 14 | 9 | 1−x−x2 | |||||
− | (7x+1)√1−x−x2+ | ∫√1−x−x2dx + | ∫ | dx | ||||
| 5 | 5 | 5 | √1−x−x2 |
| x2+2 | 2 | 23 | ||||
∫ | dx =− | (7x+1)√1−x−x2+ | ∫√1−x−x2dx | |||
| √1−x−x2 | 5 | 5 |
| 1 |
| ||||||||||||||||||
∫√1−x−x2dx = (x+ | )√1−x−x2 − ∫ | dx | |||||||||||||||||
| 2 | √1−x−x2 |
| 1 |
| ||||||||||||
∫√1−x−x2dx = (x+ | )√1−x−x2 − ∫ | dx | |||||||||||
| 2 | √1−x−x2 |
| 1 |
| |||||||||||||||||||||
∫√1−x−x2dx = (x+ | )√1−x−x2 − ∫ | dx | ||||||||||||||||||||
| 2 | √1−x−x2 |
| 1 | 5 | 1 | ||||
∫√1−x−x2dx = (x+ | )√1−x−x2 − ∫√1−x−x2dx+ | ∫ | dx | |||
| 2 | 4 | √1−x−x2 |
| 1 | 5 | 1 | ||||
2∫√1−x−x2dx = (x+ | )√1−x−x2 + | ∫ | dx | |||
| 2 | 4 | √1−x−x2 |
| 1 | 5 | 1 | ||||
2∫√1−x−x2dx = (x+ | )√1−x−x2 + | ∫ | dx | |||
| 2 | 4 | √5/4−(x+1/2)2 |
| 5 | 1 | 5 | √5 | 1 | |||||
∫ | dx = | * | ∫ | dt | |||||
| 4 | √5/4−(x+1/2)2 | 4 | 2 | √5/4−5/4t2 |
| 5 | 1 | 5 | 1 | ||||
∫ | dx = | ∫ | dt | ||||
| 4 | √5/4−(x+1/2)2 | 4 | √1−t2 |
| 5 | 1 | 5 | (2x+1) | ||||
∫ | dx = | arcsin( | )+C1 | ||||
| 4 | √5/4−(x+1/2)2 | 4 | √5 |
| 1 | 5 | (2x+1) | ||||
2∫√1−x−x2dx = (x+ | )√1−x−x2 + | arcsin( | )+C1 | |||
| 2 | 4 | √5 |
| 1 | 1 | 5 | (2x+1) | |||||
∫√1−x−x2dx = | (x+ | )√1−x−x2 + | arcsin( | ) + C2 | ||||
| 2 | 2 | 8 | √5 |
| x2+2 | 2 | |||
∫ | dx =− | (7x+1)√1−x−x2+ | ||
| √1−x−x2 | 5 |
| 23 | 1 | 1 | 5 | (2x+1) | |||||
( | (x+ | )√1−x−x2 + | arcsin( | ) )+C | |||||
| 5 | 2 | 2 | 8 | √5 |
| x2+2 | ||
∫ | dx = | |
| √1−x−x2 |
| 14 | 23 | 2 | 23 | 23 | (2x+1) | |||||||
(− | x+ | x− | + | )√1−x−x2+ | arcsin( | )+C | ||||||
| 5 | 10 | 5 | 20 | 8 | √5 |
| x2+2 | 1 | 23 | (2x+1) | |||||
∫ | dx =− | (2x−3)√1−x−x2 + | arcsin( | ) + C | ||||
| √1−x−x2 | 4 | 8 | √5 |
| t2 − c | ||
x = | ||
| 2√at + b |
| 2√at2 + bt − √at2 + √ac | ||
√ax2+bx+c = t − √ax = | ||
| 2√at + b |
| √at2 + bt + √ac | ||
√ax2+bx+c = | ||
| 2√at + b |
| 2t(2√at + b) − 2√a(t2 − c) | ||
dx = | dt | |
| (2√at + b)2 |
| √at2 + bt + √ac | ||
dx = 2 | dt | |
| (2√at + b)2 |
| t2 − c | √at2 + bt + √ac | |||
∫R( | , | ) | ||
| 2√at + b | 2√at + b |
| √at2 + bt + √ac | ||
*2 | dt | |
| (2√at + b)2 |
| 2√ct − b | ||
x = | ||
| a−t2 |
| 2√ct2 −bt +√ca − √ct2 | ||
√ax2+bx+c = xt + √c = | ||
| a−t2 |
| √ct2 −bt +√ca | ||
√ax2+bx+c = | ||
| a−t2 |
| 2√c(a−t2) − (−2t)(2√ct − b) | ||
dx = | dt | |
| (a−t2)2 |
| 2√ca − 2√ct2+4√ct2−2bt | ||
dx = | dt | |
| (a−t2)2 |
| √ct2 − bt + √ca | ||
dx = 2 | dt | |
| (a−t2)2 |
| 2√ct − b | √ct2 −bt +√ca | |||
∫R( | , | ) | ||
| a−t2 | a−t2 |
| √ct2 − bt + √ca | ||
* 2 | dt | |
| (a−t2)2 |
| aβ − αt2 | ||
x = | ||
| a − t2 |
| aβ − αt2 | ||
√ax2+bx+c = (x − α)t = ( | − α)t | |
| a − t2 |
| a(β − α)t | ||
√ax2+bx+c = | ||
| a − t2 |
| −2αt(a−t2) − (−2t)(aβ − αt2) | ||
dx = | dt | |
| (a−t2)2 |
| −2aαt+2αt3+2aβt−2αt3 | ||
dx = | dt | |
| (a−t2)2 |
| a(β−α)t | ||
dx = 2 | dt | |
| (a−t2)2 |
| aβ − αt2 | a(β − α)t | |||
∫R( | , | ) | ||
| a − t2 | a − t2 |
| a(β−α)t | ||
*2 | dt | |
| (a−t2)2 |
| L(x) | R(x) | |||
∫ | dx = ∫W(x)dx + ∫ | dx | ||
| M(x) | M(x) |
| R(x) | ||
Aby sprawdzić czy | jest ułamkiem nieskracalnym można skorzystać | |
| M(x) |
| L(x) | ||
∫ | dx , przy czym wiemy że stopień L(x) jest mniejszy od stopnia M(x) | |
| M(x) |
| L(x) | ||
a także że | jest nieskracalny | |
| M(x) |
| L(x) | L1(x) | L2(x) | ||||
∫ | dx = | +∫ | dx | |||
| M(x) | M1(x) | M2(x) |
| M(x) | ||
M2(x) = | ||
| M1(x) |
| L(x) | L1(x) | L2(x) | ||||
∫ | dx = | +∫ | dx | |||
| M(x) | M1(x) | M2(x) |
| d | L(x) | d | L1(x) | L2(x) | |||||
∫ | dx = | ( | +∫ | dx) | |||||
| dx | M(x) | dx | M1(x) | M2(x) |
| d | L(x) | d | L1(x) | d | L2(x) | ||||||
∫ | dx = | ( | ) + | ∫ | dx | ||||||
| dx | M(x) | dx | M1(x) | dx | M2(x) |
| L(x) | L1'(x)M1(x) − L1(x)M1'(x) | L2(x) | |||
= | + | ||||
| M(x) | M12(x) | M2(x) |
| L(x) | L1'(x)M1(x)M2(x) − L1(x)M1'(x)M2(x) | ||
= | |||
| M(x) | M12(x)M2(x) |
| L2(x) | ||
+ | ||
| M2(x) |
| L(x) | L1'(x)M1(x)M2(x) − L1(x)M1'(x)M2(x) | ||
= | |||
| M(x) | M12(x)M2(x) |
| L2(x)M12(x) | ||
+ | ||
| M12(x)M2(x) |
| L(x) | |
= | |
| M(x) |
| L1'(x)M1(x)M2(x) − L1(x)M1'(x)M2(x)+L2(x)M12(x) | |
| M12(x)M2(x) |
| L(x) | |
= | |
| M(x) |
| L1'(x)M1(x)M2(x) − L1(x)M1'(x)M2(x)+L2(x)M12(x) | ||
| M1(x)M(x) |
| L(x) | M1(x)(L1'(x)M2(x) − L1(x)H(x)+L2(x)M1(x) | ||
= | |||
| M(x) | M1(x)M(x) |
| M1'(x)M2(x) | ||
gdzie H(x) = | ||
| M(x) |
| L(x) | L1'(x)M2(x) − L1(x)H(x)+L2(x)M1(x) | ||
= | |||
| M(x) | M(x) |
| M1'(x)M2(x) | ||
gdzie H(x) = | ||
| M(x) |
| L(x) | ||
∫ | dx | |
| M(x) |
| L(x) | A1 | A2 | Ak | ||||
= | + | + ... + | |||||
| M(x) | x − a1 | x − a2 | x − ak |
| B1(x − p1) + C1q | ||
+ | + | |
| (x − p1)2 + q12 |
| B2(x − p2) + C2q | ||
+ | + ...+ | |
| (x − p2)2 + q22 |
| Bm(x − pm) + Cmq | ||
| (x − pm)2 + qm2 |
| 1 | ||
∫ | dx = ln|x − a| + C | |
| x−a |
| (x−p) | 1 | |||
∫ | dx = | ln((x − p)2 + q2)+C | ||
| (x − p)2 + q2 | 2 |
| q | q | ||||||||||||
∫ | dx = ∫ | dx | |||||||||||
| (x − p)2 + q2 |
|
| q |
| ||||||||||||
∫ | dx = ∫ | dx | |||||||||||
| (x − p)2 + q2 |
|
| q | x−p | |||
∫ | dx = arctg( | )+C | ||
| (x − p)2 + q2 | q |