| 7n2−4n | ||
Zbadać monotonność i ograniczoność ciągu o wyrazie ogólnym an= | ||
| 3n2−n |
| 7(n+1)2−4(n+1) | ||
an+1= | =
| |
| 3(n+1)2−(n+1) |
| 7n2+14n+7−(4n+4) | ||
= | =
| |
| 3(n+1)2−(n+1) |
| 7n2+14n+7−4n−4 | ||
= | =
| |
| 3(n+1)2−(n+1) |
| 7n2=10n+3 | ||
= | =
| |
| 3(n+1)2−(n+1) |
| 7n2+10n+3 | ||
= | ||
| 3n2=6n=3−n−1 |
| 7n2+10n+3 | ||
= | ||
| 3n2−5n+2 |
| 7n2+10n+3 | 7n2−4n | |||
an+1−an= | − | |||
| 3n2−5n+2 | 3n2−n |
| [7n2+10n+3)(3n2−n) | (7n2−4n)(3n2−5n+2) | |||
= | − | |||
| (3n2−5n+2)(3n2−n) | (3n2−n)(3n2−5n+2) |
| 21n4−7n3+30n3−10n2+9n2−9n | ||
= | −
| |
| (3n2−5n+2)(3n2−n) |
| 21n4−35n3+14n2−12n3+20n2−8n | ||
| (3n2−n)(3n2−5n+2) |
| 21n4+23n3−1n2−9n | 21n4−47n3+34n2−8n | |||
= | − | |||
| (3n2−5n+2)(3n2−n) | (3n2−n)(3n2−5n+2) |
| 21n4+23n3−1n2−9n−21n4+47n3−34n2−8n | ||
= | ||
| (3n2−5n+2)(3n2−n) |
| 70n3−35n2−n | ||
= | ||
| (3n2−5n+2)(3n2−n) |
| n(70n2−35n−1) | ||
= | ||
| (3n2−5n+2)(3n2−n) |
| 7n2−4n | ||
an= | za 'n'' podst. 1
| |
| 3n2−n |
| 7*12−4*1 | ||
a1= | ||
| 3*12−1 |
| 7−4 | 3 | |||
a1= | = | |||
| 3−1 | 2 |
| 3 | ||
ciąg jest rosnący , ograniczenie z dołu wynosi | ||
| 2 |
| 7n2 + 10n + 3 | ||
an+1 = | ||
| 3n2+5n + 2 |
| 7n2 − 4n | n(7n − 4) | 7n−4 | ||||
an = | = | = | , n ∊ N+ | |||
| 3n2 − n | n(3n − 1) | 3n − 1 |
| 7n2−4n | ||
an= | ||
| 3n2−n |
| n(7n−4) | 7n−4 | |||
an= | = | |||
| n(3n−1) | 3n−1 |
| 7(n+1)−4 | 7n+7−4 | 7n+3 | ||||
an+1 = | = | = | ||||
| 3(n+1)−1 | 3n+3−1 | 3n−2 |
| 7n+3 | 7n−4 | |||
an+1−an= | − | =
| ||
| 3n−2 | 3n−1 |
| (7n−3)(3n−1)−(7n−4)(3n−2) | ||
= | ||
| 3n−2−3n−1 |
| (21n2−7n+9n−3)−(21n2−14n+12n−8) | ||
= | ||
| 3n−2−3n−1 |
| 21n2−7n+9n−3−21n214n+12n+8 | ||
= | ||
| 3n−2−3n−1 |
| −3+8 | 5 | |||
= | = | |||
| 3n−2−3n−1 | 3n−2−3n−1 |
| 7n−4 | 7*1−4 | 3 | ||||
a1= | = | =U{7−4}[3−1} = | ||||
| 3n−1 | 3*1−1 | 2 |
| 7n−4 | ||
lim→∞= | =
| |
| 3n−1 |
| 7nn4n | 7−0 | 7 | 1 | |||||
= | = | = | =2 | |||||
| 3nn−1n | 3−0 | 3 | 3 |
| 1 | ||
Ten ciąg jest rosnący dla każdego "x" należącego do "n" i jest ograniczony z dołu =1 | i z | |
| 2 |
| 1 | ||
góry lim→∞=2 | ||
| 3 |