| 1 | 1 | |||
Wiedząc, że x3+ | =110, oblicz x2+ | . | ||
| x3 | x2 |
| 1 | 1 | 1 | ||||
x3 + | = (x + | )((x + | )2 − 3) = 110 | |||
| x3 | x | x |
| 1 | ||
x + | = 5 | |
| x |
| 1 | 1 | |||
x2 + | = (x + | )2 − 2 = 25 − 2 = 23 ![]() | ||
| x | x |
| 1 | 1 | 1 | 1 | |||||
(x + | )3 = x3 + 3x2* | + 3x* | + | |||||
| x | x | x2 | x3 |
| 1 | 1 | 1 | ||||
(x + | )3 = x3 + | + 3(x + | )
| |||
| x | x3 | x |
| 1 | 1 | |||
x + | = t i x3 + | = 110
| ||
| x | x3 |
| 1 | ||
t3 − 3t − 110 = 0 (t − 5)(t2 + 5t + 22) = 0 ⇒ t = 5 ⇒ x + | = 5
| |
| x |
| 1 | 1 | 1 | ||||
(x + | )2 = 25 ⇒ x2 + 2 + | = 25 ⇒ x2 + | = 23 | |||
| x | x2 | x2 |