| 5n2−3n | ||
an= | ||
| 3n2−2n |
| n(5n−3) | ||
an= | ||
| n(3n−2) |
| 5n−3 | ||
n się skraca i an= | ||
| 3n−2 |
| 5(n+1)−3 | 5n+5−3 | 5n+2 | ||||
an+1= | = | = | ||||
| 3(n+1)−2 | 3n+3−2 | 3n+1 |
| 5n+2 | 5n−3 | |||
an+1−an = | − | |||
| 3n+1 | 3n−2 |
| (5n+2)(3n−2)−(5n−3)(3n+1) | ||
= | ||
| (3n+1)(3n−2) |
| 15n2−10n+6n−4−(15n2+5n−9n−3) | ||
= | ||
| (3n+1)(3n−2) |
| 15n2−10n+6n−4−15n2−5n+9n+3 | ||
= | ||
| (3n+1)(3n−2) |
| 8n−1 | ||
zostaję | Nie wiem czy tak ma to zostać czy trzeba dalej liczyć , | |
| (3n+1)(3n−2) |
| 5*1−3 | 5−3 | 2 | ||||
a1= | = | = | =1 | |||
| 3*1−2 | 3−2 | 1 |
| 5n−3 | ||
lim→∞ | = dzielimy wszystkie wyrazy przez n | |
| 3n−2 |
| 5n | |
→5 | |
| n |
| 3 | |
→0 | |
| n |
| 3n | |
→3 | |
| n |
| 2 | |
→5 | |
| n |
| 5−0 | ||
co daje nam lim→∞= | ||
| 3−0 |
| 5 | 2 | |||
lim→∞= | = 1 | |||
| 3 | 3 |
| 2 | ||
Czyli ciąg jest ograniczony z dołu 1 a z góry 1 | ||
| 3 |
| −1 | ||
an+1−an = | <0 dla każdego n∊N ⇒ | |
| (3n+1)(3n−2) |