| n( n−3) | ||
, dla n >3
| ||
| 2 |
| n(n−3) | ||
= 2n
| ||
| 2 |
| n(n−3) | ||
p = | ||
| 2 |
rzeczywiście popisałam bzdury. Późno jest, to dlatego
x−1x+7 ≤ 0 x≠−7
x−1x+7 ≥ 0 i x−1x+7 ≤ 0
(x−1)(x+7) ≥ 0 (x−1)(x+7) ≤ 0
x1=1 x2 = −7 x1=1 x2 = −7
x∊(−∞ ; −7) ∪ < 1 ; ∞ ) x ∊ (−7 ; 1 >
x=1
2x−4 ≥ 12x+8 x≠4 i x≠−4
2 2x+8 ≥ x−4
4 x+4 ≥ x−4 / * 2
16(x+4)2 ≥ (x−4)2
16(x2+8x+16) ≥ x2−8x+16
16x2+128x+256−x2+8x−16 ≥ 0
15x2 + 136x + 240 ≥
Δ= 18496−14400 = 4096
√Δ = 64
x1 = −136−6430 = −203
x2 = −136+6430 = −125
x∊(−∞; −203 > ∪ < −125 ; ∞ ) x≠4 i x≠−4
x∊(−∞; −203 > ∪ < −125 ; 4 ) ∪ (4 ; ∞)