| 1 | ||
Wykaż tożsamość : (tgx+ctgx)2= | ||
| sin2xcos2x |
| sin2x | 2sin2xcos2x | cos2x | |||
+ | + | = | |||
| cos2x | sin2xcos2x | sin2x |
| sin4x + 2sin2xcos2x + cos4x | |
= | |
| sin2xcos2x |
| (sin2x + cos2x)2 | 1 | ||
+ | |||
| sin2cos2x | sin2xcos2x |
| sinα | cosα | |||
L = ( | + | )2 = | ||
| cosα | sinα |
| sin2α+cos2α | ||
( | )2 = | |
| sinα*cosα |
| 1 | ||
( | )2 = | |
| sinα*cosα |
| 1 | |
| sin2αcos2α |