d=2
x=1
r=√2
| x | ||
cosα= | ||
| r |
| √2 | ||
cosα= | ||
| 2 |
| 1 | ||
Pw= | πr2=0,25π2=0,5π | |
| 4 |
| 1 | ||
P= | r*r=1 | |
| 2 |
P = 2*Podcinka ACB
Podcinka ACB=Pwycinka ASB − Ptrójkąta ASB
SM=2
SM = SC+CM
2=√2+CM
CM=2−√2
SE=CM=2−√2
EC = SM−SE−CM = 2−(2−√2)−(2−√2)=2−2+√2−2+√2 = 2√2−2
| EC | ||
DC = | =√2−1 | |
| 2 |
| SD | 1 | √2 | ||||
cosα= | = | = | ||||
| SB | √2 | 2 |
| 1 | 1 | 2π | π | |||||
Pwycinka ASB = | *Pkoła = | *πr2 = | = | |||||
| 4 | 4 | 4 | 2 |
| AS*BS | 2 | |||
Ptrójkąta ASB= | = | =1 | ||
| 2 | 2 |
| π | ||
Podcinka ACB= | −1 | |
| 2 |
| π | ||
P=2*( | −1)=π−2 | |
| 2 |