Godzio: 1.
Po raz setny :
liczby dwucyfrowe:
10, 11, 12, ..., 99
dwucyfrowe które przy dzieleniu przez 7 dają liczbę 1:
15,22,29, ...., 99
Suma tych liczb:
15 + 22 + 29 + ... + 99
a1 = 15
an = 99
r = 7
a
n = a
1 + (n−1)*r
99 = 15 + 7n − 7
99 = 8 + 7n
91 = 7n
n = 13
2.
a
1 = 3
a
2 = 7
r = a
2 − a
1 = 4
a
11 = a
1 + 10r = 3 + 40 = 43
a
30 = a
1 + 29r = 3 + 116 = 119
n = ? −> a
11,a
12, a
13, .... a
30 => n = 20
| | a11 + a30 | |
S11−>30 = |
| * 20 = ... |
| | 2 | |
3.
a
2 = a
1 * q
a
1 = 72
| | 1 − q10 | |
S10 = a1 * |
| = ... podstaw dane i oblicz |
| | 1 − q | |
4.
13 + 11 + 9 + ... + x = 51
a
1 = 13
a
n = x
r = − 2
S
n = 51
a
n = a
1 + (n−1)*r
x = 13 − 2n + 3
x = 16 − 2n
| | a1 + an | | 13 + x | | 29 − 2n | |
Sn = |
| * n = |
| * n = |
| * n |
| | 2 | | 2 | | 2 | |
29n − 2n
2 = 102
−2n
2 + 29n − 102 = 0
Δ = 25
| | −29 − 5 | | −34 | |
n1 = |
| = |
| −> niecałkowita więc odrzucamy |
| | −4 | | −4 | |
n = 6
x = 16 − 2n = 16 − 12 = 4