5 zadań z tożsamości trygonometrycznej
chosen:

| | ctg α | |
1. Udowodnij, że: cos2α = |
| |
| | tg α + ctg α | |
2. Dany jest ctg α = 5. Oblicz 2sin
2α − 3cos
2α
| | 2 | |
3. Mając cos α = |
| oblicz tg α + sin α |
| | 5 | |
4. Drzewo rzuca cień o długości 15 m a kąt padania promieni wynosi 18
o Oblicz h drzewa.
5. Oblicz x ( z rysunku na górze )
30 maj 21:06
Amaz:
1. wymnoż stronami przez tgx+ctgx dostaniesz:
| | cos3x | |
cosxsinx + |
| =ctgx teraz stronami mnożysz przez sinx |
| | sinx | |
cosxsin
2x + cos
3x=cosx, dzielisz stronami przez cosx
sin
2x + cos
2x=1, Zgadza się
30 maj 21:15
Amaz: to może zrobie jeszcze podpunkt numer 5
Widzę, że ten mniejszy trójkąt jest równoramienny, więc druga przyprostokątna całego, dużego
trójkąta to x+8, zatem:
Z tego wynika, że x=4(1+
√3), o ile nie pomyliłem się w obliczeniach
30 maj 21:22
chosen: Dziękuję Ci bardzo
30 maj 21:25