znaleźć dziedzinę funkcji i funkcję odwrotną do
riki : y =√ ln (x−1)/(x)
29 maj 16:28
Jack: | | x−1 | |
argumentem ln jest x−1 czy |
| . Z zapisu wynika że x−1 ale wolę się upewnić. |
| | x | |
29 maj 17:36
Jack: to było pytanie...
29 maj 17:42
riki : nie x−1

to drugie
29 maj 20:47
Basia:
Jack pyta czy to jest
f(x)=
√lnx−1x
czy
bo to spora różnica
30 maj 05:44
Basia: a ja jestem pewna, że to pierwsze
stąd:
1.
x−1x>0 ⇔ x∊(−
∞,0)∪(1;+
∞)
2.
ln
x−1x≥0
ln
x−1x≥ln1
x−1x≥1
x−1x−1≥0
x−1−xx≥0
−1x≥0
x≤0
co razem daje:
D=(−
∞,0)
y=
√lnx−1x /()
2
y
2=ln
x−1x
e
y2=e
lnx−1x
e
y2=
x−1x
e
y2=1−
1x
1x=1−e
y2
30 maj 05:53
riki : Basia nie...Ja to źle zapisałam

Miało być tak f(x)=
√lnx−1x
30 maj 12:39
riki : Błagam pomóżcie
30 maj 13:50
Basia: no to właśnie tak policzyłam
30 maj 14:27
riki: ok ok dziekuje
30 maj 16:00