| cos2x | ||
∫ | dx | |
| sin22x |
| lnx | ||
∫ | dx | |
| x5 |
| 1 | ||
∫ | dx | |
| √9−x2 |
| √x | ||
∫ | dx | |
| x+1 |
| (1+x2)2 | ||
∫ | ||
| x√x |
| 1 | dt | 1 | 1 | 1 | 1 | 1 | ||||||||
I= ∫ | * | = | ∫ | dt = | *(− | )+C = − | + C = | |||||||
| t2 | 2 | 2 | t2 | 2 | t | 2t |
| 1 | ||
− | +C | |
| 2sin2x |
| lnx | 1 | |||
I= ∫ | * | dx = ∫ U{t}{e4t dt = ∫t*e−4t dt | ||
| x4 | x |
| −t−1 | |
+C = | |
| e4t |
| −1−lnx | |
+ C | |
| x4 |
| 1 | ||
I = ∫ | dx = | |
| √9−x2 |
| 1 | ||
∫ | dx = | |
| √9(1−x29) |
| 1 | ||
∫ | dx | |
| 3√1−x29) |
| 1 | ||
I=∫ | dt = arcsint + C = arcsinx3 +C | |
| √1−t2 |
| √x | ||
I=∫ | dx | |
| x+1 |
| 1 | ||
f(x) = √x f'(x)= | ||
| 2√x |
| 1 | ||
g'(x)= | g(x)=ln|x+1|=ln(x+1) | |
| x+1 |
| ln(x+1) | ||
I=√x*ln(x+1)−∫ | dx | |
| 2√x |
| ln(x+1) | ||
I1=∫ | dx | |
| 2√x |
| 1 | ||
dt = | dx | |
| 2√x |
| 2t | ||
f(t)=ln(t2+1) f'(t)= | ||
| t2+1 |
| 2t2 | ||
I1= t*ln(t2+1) − ∫ | dt = | |
| t2+1 |
| t2+1−1 | ||
t*ln(t2+1) − 2∫ | dt = | |
| t2+1 |
| t2+1 | 1 | |||
t*ln(t2+1) − 2∫ ( | − | ) dt = | ||
| t2+1 | t2+1 |
| 1 | ||
t*ln(t2+1) − 2∫ 1 dt + 2∫ | dt = | |
| t2+1 |
| 1 | ||
f(x)=ln(x+1) f'(x)= | ||
| x+1 |
| x3 | x3 | |||
I= | *ln(x+1) − 13∫ | dx | ||
| 3 | x+1 |
| x3 | ||
I1=∫ | dx | |
| x+1 |
| t3−3t2+3t−1 | ||
I1=∫ | dt = ∫ (t2−3t+3−1t) dt | |
| t |
| (1+x2)2 | ||
I=∫ | dx = | |
| x√x |
| 1+2x2+x4 | ||
∫ | dx = | |
| x3/2 |
| xα+1 | ||
∫xα= | dla każdego α≠−1 | |
| α+1 |
| √x | t*2t | t2+1−1 | ||||
∫ | dx = |√x=t , x=t2, dx=2tdt| = ∫ | dt= 2∫ | dt= | |||
| x+1 | t2+1 | t2+1 |
| 1 | ||
= 2∫dt − 2∫ | dt = 2t −2arctgt +C = 2√x−2arctg(√x) + C , C∊R | |
| t2+1 |