Dane: b = 9 cm, d = 17 cm, c = 10 cm P = ?
Obliczam pole ΔACD o 3 danych bokach za pomocą wzoru Herona:
| b+d+c | 9+17+10 | 36 | ||||
P = √p(p−b)(p−d)(p−c), p = | = | = | = 18 cm | |||
| 2 | 2 | 2 |
| 1 | ||
To samo pole: P = | ||
| 2*b*h |
| 1 | 2 | |||
Czyli: | *9*h = 36 ⇒ h = 36* | = 9 cm | ||
| 2 | 9 |
| a−b | ||
Z ΔAED : ( | )2 + h2 = c2 | |
| 2 |
| a−9 | ||
( | )2 + 82 = 92 | |
| 2 |
| (a−9)2 | ||
+64 = 81 | ||
| 4 |
| (a−9)2 | ||
= 17 /*4 | ||
| 4 |
| 1 | 1 | |||
P = | (a+b)*h = | (2√17 + 9 + 9)*8 = (2√17 + 18)*4 = | ||
| 2 | 2 |
| a−9 | ||
( | )2 + 82 = 102 | |
| 2 |
| (a−9)2 | ||
+ 64 = 100 | ||
| 4 |
| (a−9)2 | ||
= 36 | ||
| 4 |
| 1 | ||
P = | (21 + 9 ) * 8 = 4 * 30 = 120 cm2 | |
| 2 |
Proponuję takie rozwiązanie:
| a + 9 | ||
( | )2 + h2 = 289 | |
| 2 |
| a − 9 | ||
( | )2 + h2 = 100 odejmujemy stronami | |
| 2 |
| a + 9 + a − 9 | a + 9 − a + 9 | |||
* | = 189 ⇒ a * 9 = 189 ⇒ a = 21 | |||
| 2 | 2 |
| 21 − 9 | ||
( | )2 + h2 = 100 ⇒ h = √100 − 36 = 8 | |
| 2 |
| 21 + 9 | ||
Pole P = | * 8 = 120 | |
| 2 |