
| 1 | 1 | 1 | ||||
1. Obliczyc : | + | +...+ | , jesli n∊N+ i n≥2
| |||
| log2x | log3x | lognx |
Prosze o jak najszybsza pomoc
!
| 1 | ||
1. wskazówka : logab = | ||
| logba |
dołączcie do nas!






:"*
:L*






"






&
:(
/





:
:(:():():()
:(
:(:()









/:L#:#:#:#
:@:@:@:@:@


&
"*:&
(

:(:(:(:(:(:(











:"*
Help
!
mam jeszcze jeden przyklad dosyc trudny :
| logax−logbx | |
=logab(ba)
| |
| logax+logbx |
| logax − logbx | ||
L = | = | |
| logax + logbx |
| |||||||||||||
= | |||||||||||||
|
| |||||||
= | |||||||
|
| logxb − logxa | logxa*logxb | ||
* | = | ||
| logxa*logxb | logxb + logxa |
| b | |||||||||||
= logab | ||||||||||||
| logxb*a | a |
| logax | ||
licznik L= logax − | = logax( 1 −logba)
| |
| logab |
| logax | ||
mianownik M=logax+ | = logax( 1 + logba)
| |
| logab |
| L | 1−logba | logbb−logba | |||
= | = | =
| |||
| M | 1+logba | logbb+logba |
| b | ||||||||||||
= | = logab | ||||||||||||
| logbab | a |