matematykaszkolna.pl
MN Ala: Zna ktoś poprawne odpowiedzi z części ZAMKNIĘTEJ? ALBO MYŚLI ŻE MA DOBRE ROZWIĄZANIA NAPISZCIE...
5 maj 13:39
5 maj 13:42
Ala: Prosze Cie napisz mi tylko z części zamkniętej, bo nie moge wejść na tę stronę. PROSZE! napisz po kolei np. ABAA w ten sposób chociasz>
5 maj 13:44
Goska: Zad.1 C (rysunek −12, −2) Zad.2 180 zł Zad.3 Ta liczba jest równa 1 Zad.4 Liczba log(4)8+log(4)2 jest równa: 2 Zad. 5 Wielomian W(x) +P(x) jest równy: 5x2+12x−3 Zad. 6 Rozwiązanie równania: 7 Zad. 7 Do zbioru nierówności należy liczba 1 Zad. 8 Wykresem funkcji kwadratowej f (x) = −3x2 +3 jest parabola o wierzchołku w punkcie (0,3) Zad. 9 Prosta o równaniu y= −2x+(3m+3) przecina w układzie współrzędnych oś Oy w punkcie (0, 2). Wtedy m=−1/3 Zad. 10 Na rysunku jest przedstawiony wykres funkcji y= f(x). Dokładnie trzy rozwiązania ma równanie f(x)=2 Zad. 11 W ciągu arytmetycznym (an) dane są: a3=13 i a5=39. Wtedy wyraz a1 jest równy −13 Zad. 12 W ciągu geometrycznym (an) dane są: a1=3 i a4=24 . Iloraz tego ciągu jest równy 2. Zad. 13 Liczba przekątnych siedmiokąta foremnego jest równa 14 Zad. 14 Kot alfa jest ostry i sin alfa = 3/4. wartość wyrażenia 2− cos 2 alfa jest równa 25/16 Zad. 15 Okrąg opisany na kwadracie ma promień 4. Długość boku tego kwadratu jest równa 4 pierwiastek 2 Zad.16 Podstawa trójkąta równoramiennego ma długość 6, a ramię ma długość 5. Wysokość opuszczona na podstawę ma długość 4 Zad. 17 Odcinki AB i DE są równoległe. Długości odcinków CD, DE i AB są odpowiednio równe 1, 3 i 9. Długość odcinka AD jest równa 2 Zad. 18 Punkty A, B, C leżące na okręgu o środku S są wierzchołkami trójkąta równobocznego. Miara zaznaczonego na rysunku kąta środkowego ASB jest równa 120 stopni Zad. 19 Latawiec ma wymiary podane na rysunku. Powierzchnia zacieniowanego trójkąta jest równa 1600 cm2 Zad. 20 Współczynnik kierunkowy prostej równoległej do prostej o równaniu y = −3x+5 jest równy: −3 Zad. 21 Wskaż równanie okręgu o promieniu 6. x2+y2=36 Zad. 22 Punkty A =(−5, 2) i B =(3, −2) są wierzchołkami trójkąta równobocznego ABC. Obwód tego trójkąta jest równy 12 pierwiastek 5 Zad. 23 Pole powierzchni całkowitej prostopadłościanu o wymiarach 5x3x4 jest równe: 94 Zad. 24 Ostrosłup ma 18 wierzchołków> Liczba wszystkich krawędzi tego ostrosłupa jest równa 34 Zad. 25 Średnia arytmetyczna dziesięciu liczb x, 3, 1, 4, 1,5, 1, 4, 1, 5 jest równa 3. Wtedy x=5 Zad. 26 Rozwiąż nierówność x2 −x−2≤0. x <−1,2> Zad. 27 Rozwiąż równanie x3−7x2−4x+28=0. x=7 lub x=−2 lub x=2 Zad. 28 Trójkąty prostokątne równoramienne ABC i CDE są położone tak, jak na poniższym rysunku (w obu trójkątach kąt przy wierzchołku C jest prosty). Wykaż, że AD = BE. ... Zad. 29 Kąt α jest ostry i tgα=5/12. Oblicz cosα cos(alfa)=12/13 Zad.30... Zad. 31 W trapezie prostokątnym krótsza przekątna dzieli go na trójkąt prostokątny i trójkąt równoboczny. Dłuższa podstawa trapezu jest równa 6. Oblicz obwód tego trapezu. 15 + 3 pierwiastek 3 Zad. 32 Podstawą ostrosłupa ABCD jest trójkąt ABC. Krawędź AD jest wysokością ostrosłupa. Oblicz objętość ostrosłupa, jeśli wiadomo, żę AD =12, BC=6, Bd=CD=13 V=48 Zad. 33 Doświadczenie losowe polega na dwukrotnym rzucie symetryczną sześcienną kostką do gry. Oblicz prawdopodobieństwo zdarzenia A polegającego na tym, że w pierwszym rzucie otrzymamy parzystą liczbę oczek i iloczyn liczb oczek w obu rzutach będzie podzielny przez 12. Wynik przedstaw w postaci ułamka zwykłego nieskracalnego. P(A)=1/6 Zad. 34 W dwóch hotelach wybudowano prostokątne baseny. Basen w pierwszym hotelu ma powierzchnię 240 m2. Basen w drugim hotelu ma powierzchnię 350 m2 oraz jest o 5 m dłuższy i 2 m szerszy niż w pierwszym hotelu. Oblicz, jakie wymiary mogą mieć baseny w obu hotelach. Podaj wszystkie możliwe odpowiedzi. W pierwszym hotelu basen ma wymiary 30x8 i w drugim 35x10. Lub w pierwszym hotelu basen ma wymiary 20x12, a w drugim 25x14
5 maj 14:10
Ala: dziękuje
5 maj 14:26
Goska: nie ma sprawy
5 maj 14:45